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A BGK Model for Small Prandtl Number 
in the Navier-Stokes Approximation 
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We present a BGK-type collision model which approximates, by a 
Chapman-Enskog expansion, the compressible Navier Stokes equations with a 
Prandtl number that can be chosen arbitrarily between 0 and 1. This model has 
the basic properties of the Boltzmann equation, including the H-theorem, but 
contains an extra parameter in comparison with the standard BGK model. This 
parameter is introduced multiplying the collision operator by a nonlinear 
functional of the distribution function. It is adjusted to the Prandtl number. 

KEY WORDS: Boltzmann equation; compressible Navier-Stokes equations; 
Prandtl number; entropy. 

1. I N T R O D U C T I O N  

The most  accepted model  which describes the evolut ion of the density of a 
rarefied gas is the Bo l t zmann  equat ion  

v V  1 
~ t f  + " x f  = - Q ( f  f )  (1) 

E 

where f ( t ,  x, v) is the dis t r ibut ion function,  t the time variable, x the space 
variable, and  v the velocity variable. Because of the complexity of the 

Bo l t zmann  collision term Q ( f  f ) ,  many  authors  tried to subst i tute a 
simpler operator,  as in the B G K  model  in t roduced by Bhatnagar ,  Gross, 
and  Krook  (2l or Welander ,  (17l where the opera tor  Q is replaced by 

J ( f )  = v ( M [ f ]  - f )  (2) 
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192 Bouchut and Perthame 

Usually v is taken proportional to the macroscopic density p(t, x) and 
M [ f ]  is the Maxwellian associated to f (see below for precise definitions). 
This model equation preserves the basic properties of the Boltzmann 
equation: conservation of mass, momentum, and energy, and dissipation of 
entropy. It also gives, in the fluid limit, the Euler equations. 

In this paper we are interested in the Navier-Stokes equations derived 
from (2) through a Chapman-Enskog expansion. (5) Many authors have 
worked on this subject for the Boltzmann equation (see, for instance, 
refs. 1, 3, 5, 8, 9, and 16) and it is well known that the resulting Prandtl 
number (for a monatomic gas) is P r= 2 /3 .  For the BGK model, 
Cercignani (4) pointed out that the associated Prandtl number is 1 and 
consequently raised the problem of finding a model which would give other 
Prandtl numbers while keeping the H-theorem. 

There are other motivations for this question. First, it is not easy to 
find in the Boltzmann equation (1) the cross section adapted to a given 
Prandtl number. Second, such a model could have numerical applications, 
as in the work of Pullin (13) and Reitz, (14) since the BGK model is simpler 
to approximate than the Boltzmann equation. 

We now present such a model. We introduce a multiplier 2i(t, x, v), 
while v = v(t, x), and we set 

O,f + v "Vxf  + v 2 f ( f -  M) = 0 (3) 

where 

P -Iv-  u12/2r (4) 
M ' =  M [ f ]  (2roT)N/2e 

is the Maxwellian of density p(t, x), mean velocity u(t, x), and temperature 
T(t, x). These macroscopic quantities are chosen as follows. First, we define 
p f, u f, and Tf by 

(Ps, PmUi, pA lusl 2 + NTu ) ) = ;nu (1, V, Ivl 2) f ( t, x, v) dv (5) 

and 

( v- .At ,  x) 
)oi(t, x, v)= 2o \ [ TI(t ' x) ]l/aj (6) 

Then p, u, and T are chosen so that 

f~N 2fM[f](1,  v, [vl 2) dv =f~N 2ff(1, v, Iv[ 2) dv (7) 
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In fact it will turn out that (Pf, Uf, Tf) and (p, u, T) are •2 close 
and thus, for the Navier-Stokes approximation, these two macroscopic 
variables are equivalent. 

Finally, we will choose 

v(t, x) = py~(Tj) (8) 

and ,~b is related to the behavior in T of the viscosity and heat conduction 
terms of Navier-Stokes equations. 

The Prandtl number Pr is governed by the choice of 2o(-). Here we 
assume 

3 C  1 , C 2, 

f Mo(W) 
2o(W) 

0<C1<~2o(W)<~ C2< +oo 

&(w) = &(t wl) 

Mo 
- -  d w  = 1 ,  -~o IwlZ dw= U' ,I 

f Mo 
IW[ 4 dw ~- N(N + 2) 

(9) 

(10) 

(11) 

Then 

f o,W,6 w 2N(N+ 2) + N(N+ 2) 2 (12) 
Pr 

We have used the notation 

e - I wl2/2 

m o ( w  ) --- (27z)N/2 ( 1 3 )  

A difference from the model proposed in ref. 4 is that, as the mean free 
path e goes to 0, f converges to a Maxwellian, thus recovering the classical 
density limit. 

The rest of the paper is organized as follows. In Section 2 we derive 
the relation (12) for the Prandtl number in the Navier-Stokes approxima- 
tion. Then we prove in Section 3 that we can indeed compute (p, u, T) in 
a unique way from the relation (7). We also introduce a "variational" 
principle which gives the H-theorem. Section 4 is devoted to an existence 
and stability proof for Eq. (3) when v=  1, using the averaging lemma. 
Finally, we show in Section 5 that the whole interval ]0, 1 ] for the Prandtl 
number can be reached by appropriate choices of 2 o. 
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2. DERIVATION OF THE NAVIER-STOKES EQUATIONS 

In this section, we show the relationship between the kinetic model 
and the hydrodynamic equations. We adopt a derivation which differs 
slightly from the classical Chapman-Enskog expansion. (4'5'16) We have 
found this presentation in Deshpande (6) and it seems simpler for our 
purpose. 

This section is organized as follows. We first recall how to recover 
the Navier-Stokes equations. Then we prove that (p, u, T ) =  
(pf, uf, Tf)+O(e2). This allows us to compute the Navier-Stokes 
coefficients deduced from our BGK model. Then we conclude this section 
with some remarks. 

2.1. The Navier-Stokes Equations 

We consider a solution f of the equation 

O,f + v . V x f  = ps2f M [ f ]  - f ' -  g (14) 

with the definitions (4)-(7). Since g satisfies 

f~N (1, v, [vl 2) g dv = 0 

the macroscopic quantities &., us, T F satisfy the system 

O,pf + div(pfuf) = 0 

a,(pfuf) + div(pfuf | uf + P) = 0 

F {lu~l ~ 

+div & +-5- )uz+eu:+Q =0  

The matrix P and the vector Q are defined by 

Po = f (v - uf)i (v - u f ) j f  dv 

(15) 

(16) 

(17) 

(18) 

' f l y -  2 qi=5 uFI ( v - u s ) , f  dv (19) 
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Finally, u | u denotes the symmetric matrix with coefficients uiuj and 
div(u | u) the vector of components ~ j  ~?(uiuj)/Oxj. 

The system (15)-(17) is the compressible Navier-Stokes system for a 
monatomic gas if 

(2  ) 
P = p f T f l N - # ( T f )  a- -~INdiV uf 

Q= -K(Tf )  VTf 

where I N is the identity matrix and 

(20) 

(21) 

Ou~ ~u/ 

The Prandtl number is the ratio 

(22) 

N + 2 # ( T )  
Pr = - -  (23) 

2 K(T) 

2.2. A Preliminary Result 

In order to compute P and Q up to 82 (as e goes to 0) when f satisfies 
the BGK equation (14), we just notice that 

f -  M =  O(e) (24) 

and thus, using (14) again, 

g 

f - M -  p f2 f (a , f  + v . V x f )  

g 

= - p f2 f (~ ,M+ v .VxM) + O(e 2) (25) 

We will show that replacing f i n  (18) and (19) by the expression given in 
terms of M through (25) yields the appropriate form of P and Q. 

We need a preliminary result: 

kemma 1. We have 

;~N (1, V, pVl2)(f -- M) dr= O(e 2) (26) 

In other words, (pf, us, Tf) differs from (p, u, T) by a term of order 
O(e2). 
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The proof of this lemma (which is of course formal) consists in first 
noticing that, thanks to (25), we have 

f -  M = 0(5) 

therefore 

O , M + v . V x M = M  ( ~ , p + v . V ~ p ) +  v - u  p T M(~,u + v .Vxu) 

(27) 

But 

_1 M t/ll~-ul 2 \ 
N I  (~,T + v . VxT)  (28) 

/ 

and thus the lhs of (27) only depends on the five first moments of M. By 
the assumptions (10), (11) on 20, this gives also 

Iv l  2 -~f(~tM + v.VxM) dv 

~ Lv[2 ,~o((V- u)/,f-T) ( O , M +  v .V~M) & + 0(~) = 0(~) 
(29) 

Combining this estimate with (25) gives the result announced in Lemma 1. 

2.3. C o m p u t a t i o n  of  P 

The matrix P is easy to compute; it only requires the five first velocity 
moments of M. Setting 2 := 20((v-  u)/x/T), we have 
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= faN (Vi- Ui)(Vj- Uj)f dv + 0(• 2) 

= PT6~ faN (V,-- Ui)(Vj -- Uj)(f-- M) dv + O(e 2) 

E 
= p vao - T  (v , -  .,) 

1 
x ~ (~tM+ v .VxM) dv + O(e 2) 

The integral term in the above formula can be evaluated in the usual 
way and we obtain 

Po.=PT6o . -eT@ro-2 f iud iv  L/) "~- O(G 2) (30) 

2.4. C o m p u t a t i o n  of  O 

Up to an O(e 2) term, we have 

2pqi= - e  I tv-u] 2 (vg-ui) l nN ~ (3tm + v . Vx M) dv 

= - - ~ f  (Vi--Ui)[V--H] 2 M  ~ ~ (,~- u) . Vxp d~ 

2U--U 

M ) 
--elaN (vi-ui) Iv-u[22~\ ~r- N 

x ( v - u ) . V x T d V  

M 
~- --,~xi p fNN (Vi-- Ui) 2 {V-- U[2 ~'s dv 

1 M 
--g y (~tUi ~- H " Vxldi) f~N (Ui-- bli) 2 [V-- lA[2 T dl) 

= - e ( N +  2) T 2 O~,p - e (N+  2) pT(Gui + u. Vxu,) 

lOxT P~----s -e-~ ~ I pTN(N+2)]  
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where 

[6= f~N IwI6 Mo(W)~ dw 
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But the momentum equation in the Euler system gives 

Tax, p + p(~,u~ + u .Vxui) = - p  ~x,T+ O(e) 

and we finally obtain 

~(I6 ( N + 2 )  2) 
qi=- 2 \2N 2 TO~T+ O(~ 2) 

N + 2  T~T 
- (31) 

where Pr is given by (12). Hence we recover the Navier-Stokes equations 
up to an O(~ 2) term, as is usual in the Chapman-Enskog expansion. 
Moreover, the viscosity and heat conduction terms have the coefficients 

N + 2  
/~(T) = ~T, x ( T I = ~ p T T  (32) 

which means that the formulas (23) and (12) for the Prandtl number are 
equivalent. 

2.5. T e m p e r a t u r e  L a w  

It is easy to modify the dependence of # and ~: on T [see (32)]. To 
do so, we just have to modify the BGK model (14) setting 

O,f +v .Vxf +pfz(Tf) -1 ,~ f f -M=o 

The same calculations as before go through and give 

N + 2  
t~(T)=eTz(T), ~c(T)=e-~-~r TZ(T) 

These provide general laws for the coefficients #(T) and ~c(T), which 
are necessary to treat high-temperature flows. 
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Remark. The Navier-Stokes equation can be formally written, using 
the above calculations, 

1v12/2 -~2 (c3' f+v" = 

with f a Maxwellian. This equation involves a diffusion term which 
depends upon p, u, T. A Boltzmann model has been proposed by 
Klimontovich (1~ on a physical basis which also contains such diffusion 
terms. 

3. EXISTENCE OF A M A X W E L L I A N  WITH THE RIGHT 
VELOCITY M O M E N T S .  V A R I A T I O N A L  PRINCIPLE 

In this section we show that it is always possible to find, once the 
parameters uf and T I of 2 are fixed, a unique Maxwellian which satisfies the 
relations 

f~u (1, [v lZ)2Mdv= (~, aft, ~(]fll2+Ny)) (33) v~ 

for given c~>~0, /3e ~N ~>0. This is necessary for our BGK model (14), 
which requires we solve (7). We also show that, associated to (33), M 
satisfies a variational principle of Gibbs type. 

Concerning the resolution of (33), it is enough to consider 2(v) as any 
function of Iv-Uo[, for some Uo ~ ~N, which satisfies (9). 

Proposition 2. Let s  satisfy (9); then, for any 
parameters ~ > 0 ,  /~ and 7 > 0  there exists a unique Maxwellian M 
satis~ing (33). 

Proof. We only treat the case c~ > 0, since e = 0 is uniquely solved by 
M =  0. We first have to fix p by 

~/p = f z dv 

Z(V) - )~(V) e_lv_.12/2 T (34) 
( 2 ~ T )  N/2 

and the problem is reduced to finding u and T such that 

(35) 
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The first equation can be reduced to a scalar problem and solved as a 
function u(fl, T). 

To prove it, we define 

V(T ,u )=I  vz dv/ f  z dv 

and we will show that, for a fixed T, V is a C 1 diffeomorphism of RN, 
whose inverse W(T, .) is C 1 of its two arguments. 

To do so, we set 

u=uo+rw, [w] =1 ,  r > 0  

and the definition of )( in (34) gives 

V=uo + w f x ( v -uo ) .w  dv/ f  z dv 

= u o + wR(r) 

R(r) does not depend on w and satisfies 

X(v- Uo)" w(v- u). w [j Z 

which is positive (even for r = 0 )  by the Cauchy-Schwarz inequality. 
Finally, the invertibility of V just requires that 

R(r) ~ +~ ,  r--* +oo 

which is readily proved by a simple analysis of the integrals which 
define R. 

At this level, we have solved the first equation in (35) choosing u as 

u = w ( r ,  fl) 

and it remains to solve (with uniqueness) the second equation in (35), 
which can be written 

cp(T) = Ifll 2 + Ny (36) 

q~(T) := f [vl2 X/I  Z (37) 
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q~ is C 1 and, using the chain rule, 

where 
and 

201 

dr 2r2O 

~ = uo + Rw, Iwl = 1, 

- -de t [ f z (v )a i (v )a j (v )dv l l<~i , ;<~3  

R~>O, a l = l ,  a2=(V-Uo).W, a3=lV-Uol 2, 

(f )2 
so that &p/dT> O. Now, Eq. (36) is uniquely solvable if we can prove 

~0(T) ~ I/~12, T - -  0 (38) 

cp(T) ~ +0% T ~  +oo (39) 

But cp(T) >/(C1/C2)(] W(T, fl)l 2 + NT), which proves (39), and 

,W(T, fl)-fl[= f g (W-v)  / f  z 

<.f • ,w-vl/ f  x 

<<. (c2/cl) , /Y f e [vl~/2 dv/( 2rO N/2 

This implies that W(T, ~) --+ fl as T-+ 0, and finally 

/ 

C2 
~< 2 ~-~ N T +  2 I W-]~[ 2 

so that we get (38) and the proof of Proposition 2 is complete. 
For further applications, let us notice that (by uniqueness mainly) the 

parameters (p, u, T) of the Maxwellian in (7) or (33) depend in a con- 
tinuous fashion on (PF, u/,  T/) and ~, /~, ? as long as ~ remains positive. 

We can now show that the Maxwellian in (33) can also be considered 
as a Gibbs equilibrium. 
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of 
T h e o r e m  3. 
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The solution M of (33) is the unique minimum point 

f ~  
Min ~Jw 2(v)g(v) in  g(v)dr; g(v)>~O, 

f )~g(1, v, ,v[2) dv= (~z, ~z[l, ~ (,~12 + NT) ) } 

We do not prove this theorem, which is a consequence of the 
convexity inequality 

g in  g - g -  (Mln  M - M ) ~ >  ( g - M )  in M 

Let us also recall that, if g ~> 0 satisfies 

f (l +lvlZ) g(v)dv< +oo 

then 

f g l n - g d v <  +oo 

Finally, let us notice that the BGK model (3)-(7) satisfies a, formal for 
now, H-theorem 

0t f f l n  f dv + div I vfln f dv<. O 

because, as usual, 

f , t f ( f  - M) ln M dv=O 

4. G L O B A L  E X I S T E N C E  IN T H E  BGK M O D E L  

In the quadratic case v = p f ,  the existence of solutions to the BGK 
model is still an open problem. For  v = 1, we show how to extend the 
existence proof proposed in Perthame. (11) For  bounded domains, the 
proof proposed by Ringeisen ~15) or Perthame and Pham (12) could also be 
extended to our case. 

Before stating our existence result, let us make precise the meaning of 
the set of equations (3)-(7). When pF(t, x ) =  0, the macroscopic quantities 
u, T, us, Tf are not defined and we just set ~.f = C, any constant, and M = 0, 
whatever are u and T. With this convention we have the following result. 
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T h e o r e m  4. 
satisfies 

Under assumptions (9), (10), if the initial datum f0 

fo(x,v)>~O, f~ufo(x,v)(l+lxl2+fvl2+ln+Jo)dxdv<~ (40) 

there exists a nonnegative solution f of the BGK equations (3)-(7) with 
v = 1 which satisfies for some constant C(T) 

f~2 f(t,x,v)(l+lxl2+[vl2+ln+f)dxdv<C(T), Vt<T (41) 

Remark. As usual, f Ivf2feC([O, oo[;Ll(~2N)) and f ]vl3fdve 
L]o~(~ + x NN) (by the moments lemma). Also, we could obtain in the same 
way a stability result for weakly convergent initial data. 

Proof of Theorem 4. We just indicate the modifications of the proof 
in ref. 11. The main new difficulty is to treat the vacuum in an approximate 
equation. The main steps are the following. 

First, it is possible to build for any e >  0 a solutionf~(t, x, v) of 

O,A + v .Vxf~ + Uf~ = 2~M[f~] 
(42) 

f~(0, x, v )=  fo(x, v) 

where 

2 ~ = p A Z f j ( e  + pj~) (43) 

and which satisfies the estimate (41). 
W e  postpone the existence proof of f ,  and we indicate now how to 

pass to the limit as e ~ 0. As usual, extracting subsequences if necessary, f~ 
converges to some f(t, x, v) weakly in LI((0, T) x j~ZN). Moreover, 
Ivl 2 Z~M[f,] is bounded in L ~ ( ~ + ;  L1(~2~)), thus S Ivl3f~ dv is bounded 
in L~oo((0, T) x ~u). Finally, using the variational principle of Section 3, we 
have 

fn2~ Zj~M[f~] In MEf~] dx dv 

<~ I~:~ 2f J, In f~ dx dv <~ C(T), Vt<~ T 

and with the assumption (9), we deduce that M[f,] is also weakly 
compact in L 1. Hence, we can use the averaging lemma, (7) and thus M[f,] 
converge a.e. and in LI((0, T) x ~2N) to M[f]. 

822/'71/1-2-~4 
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Also, 

where 

U ~  2f in L~o~(E ) and a.e. in E 

E--- {(t, x, v) e [0, r ]  x N2N; pf(t, x) vL 0} 

and this is enough to pass to the limit as e -~ 0 and to obtain a solution of 
(3)-(7). Indeed, on the set EC, f~ and M[f~] converge in L 1 to 0; therefore 
).~ just needs to remain bounded, which is the case. 

Let us now come back to the problem (42)-(43). A solution can be 
built using Schauder's theorem. Consider the set D of functions 
g E C([0, T];  L~(R2w)), g/> 0, which satisfy for all 0 ~< t ~< T 

f~2u (1' Ivl2) g dx dv ~ eCz' f~zN (1, [vl2) fo dx dv 

fv~N 'x[2 g dx dv <<. 2eC2r ( fa2u 'xl2 fo + T2eC2r f~2N lvL2 fo ) 

f~2N g ln+g dx dv <~ C(t) 

and 

~?,g+v.Vxg=h, g(O,x,v)=fo(x,v ) (44) 

for some function h(t, x, v) such that 

fa2N (1 + Ivl 2 + ixL2 + in + ]hi ) ]hi dx dv <~ Co 

It is easy to see that the constants C(t), C O can be chosen such that 
T~(D) c D, where T~ is the operator which associates to g e D the function 

f - -  T~g~ C([0, T];  LI(N2N)), solution of 

Otf+v.Vxf+2gf=2gM[g]  in [0, T ] x ~  2N, 

f(0, x, v )=  f0(x, v) (45) 

g 2g is now defined [even on the set where pg(t, x) = 0] by 

Pg 2g -~ ~g 
e+pg (46) 
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Notice that the solution f is explicitly given by the method of charac- 
teristics. It is now clear that T,(D) is compact (for e > 0 fixed) because the 
condition (44) and the moments lemma (11) applies, showing that the 
averages (pg, pgUg, pglUgl 2 -'}- Npg Tg)geD are compact in LI([0, T]  x BR) 
for any R > 0. (7) As in ref. 11, this is enough for the compactness of T,, so 
that T, admits at least one fixed point. This completes the proof of 
Theorem 4. 

5. EXISTENCE OF h o FOR A GIVEN PRANDTL N U M B E R  
IN ]0, 1 ] 

Proposition 5. For every P r e ] 0 ,  1], there is a function 2o(V ) 
satisfying (9), (10) for some constants C~, C2 and the relations (11), (12) 
with the Prandtl number Pr. 

Proof. We write 1/20(v)= 1 +Z(V), and we look for Z(IV])EL~(~N), 
essinf Z > -1 ,  

f zMo(1, (v[2, ,v[4' (v[6)dv=(O, O, O, 2N(N+ 2 ) ( 1 - 1 ) )  

Since ;(---0 gives Pr = 1, we only have to solve the problem for small 
values of Pr. Of course, the idea is to concentrate Z on the large values 
of Iv]. 

Let 

V= {q)(v)eL~176 N) s. t .  (p only depends on ]v[} 

V is an infinite-dimensional vector space, on which the linear forms 

t" 
~o --+ J ~pM o Ivl 2"  dv 

are independent. 

(m=0,  1,...) 

First Step: Ve>O, 3~0e Vs.t. 

q~>0, f q)Mo(1, [vl 2, [vla)dv<~e, f~pMolvl6dv>~ 1 

Proof. Choose (poEV, q)o~>0, q~o~0, supp ~ o 0 = [ l < t v J < 2  ], and 
define ~o~ = C~oo(v/a), where C~ is chosen so that 

f qg~Mo [vl 6= ~r 
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We have 

~oaMolT)12m=cfff~~ 
r Ivl 2m ~ 0"2m--6 f r Ivl 6 ~ o'2m- 5 

If we choose a large o-, we get a solution for the above problem. 

Second Step: Ve>0,3;geVs.t.  

6 1 
X ~ - e ,  fXMo(1,1vl2,1v[4) dv=O, fXMolvl  d v ~ -  g 

Proof. Let W be a four-dimensional subspace of V on which the four 
linear forms are independent (it is equivalent to asserting that W is a 
supplementary of the intersection of the kernels). For any I0, 12, I4, 16 
there exists a corresponding w e W having the moments I0, I2, 14, 16, and 
if we choose IIoL ~<t/,..., 1161 ~<t/, we get IIWqhL| By the first step there 
exists ~o >7 0 such that 

f pMo(1, Ivl 2, I v l 4 ) ~ ,  f wMo Iv]6~l/~ 

Choose w e W such that 

f WMo(1 , It)l 2, 113[ 4) d/)~-~ f ~oMo(1, Iv[ 2, Iv[ 4) dv 

f wMo Ivl6=0 

We have )lwjlL~<~e, and we may take : g = q ) - w .  | 

NOTE ADDED IN PROOF 

We complete our references with the book by R. Brun, Transport et 
Relaxation dans les Eeoulements Gazeux (Masson, Paris, 1986), in which 
can be found the S-model of Shakov (p. 172), giving the right Prandtl 
number, but which does not satisfy the H-Theorem. 
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